(a)	In the space below, Brownian motion.	draw a simple	labelled	diagram	of the	apparatus	used to	demonstrate
								[2]
(b)	State what is observ	ved.						
(0)	Evolain what is obso							[2]
(6)	Explain what is obse	erved iii terriis o	i molecui	es .				
								[2]
								[Total: 6]

Fig. 6.1 shows a quantity of gas in a cylinder fitted with a piston P.

gas

Fig. 6.1

(a) Describe the motion of the molecules of the gas.

State and explain, in terms of molecules, what happens to the pressure of the gas.

(ii)	Before pushing the piston down, the pressure of the gas was $1.0 \times 10^5 \text{Pa}$. Pushing the piston down reduces the volume of the gas from 500cm^3 to 240cm^3 .
	Calculate the final pressure of the gas.
	pressure =[2]
	[Total: 7]

3	(a)	Puo	ddles of water form on a path after rainfall on a windy day.
			erms of molecules, state and explain how the rate of evaporation of the puddles is cted by
		(i)	a reduction of wind speed,
			[2]
		(ii)	an increase of water temperature.
	4. \	- -	[2]
	(D)	Fig.	5.1 shows two puddles.
			large puddle
			small puddle
			The Man and the Ma
			Fig. 5.1
			e and explain how the rate of evaporation from the large puddle compares to that from the all puddle under the same conditions.
			·
			[2]

(c)	Describe an experiment to demonstrate the difference between good and bad emitters of infra-red radiation. You may include a diagram to help your description. State what readings should be taken.
	[3]
	[Total: 9]

4				mples of three states of matter. T ass beaker and a gas in a clear b		ock resting
				ngement of molecules in the solid	·	
			solid	liquid	gas	
			Fig. 4.1a	Fig. 4.1b	Fig. 4.1c	
	(a)	(i)	Complete Fig. 4.1b,	to show the arrangement of mol	ecules in the liquid.	
		(ii)	Complete Fig. 4.1c,	to show the arrangement of mol	ecules in the gas.	[3]
	(b)	(i)	In the list below, dra	w a ring around the state of matt	ter that is the easiest to c	ompress.
			the solid	t		
						[1]
		(ii)	In terms of its molec	cules, explain why this state of m	atter is the easiest to con	npress.
						[2]
						[Total: 6]

(a)	(i)	In the box below, sketch a diagram to represent the arrangement of helium molecules in a balloon.
		[2]
(ii)	State and explain how the size of the attractive forces acting between the molecules of a gas compares with the size of the attractive forces between the molecules of a solid.
		[2]
		helium in the cylinder has a volume of $6.0 \times 10^{-3} \text{m}^3$ (0.0060 m ³) and is at a pressure of $5 \times 10^6 \text{Pa}$.
	(i)	The pressure of helium in each balloon is $1.1 \times 10^5 \text{Pa}$. The volume of helium in an inflated balloon is 3.0×10^{-3} (0.0030 m ³). The temperature of the helium does not change.
		Calculate the number of balloons that were inflated.
		number of balloons =[3]

(ii)	Later, the temperature increases and some of the balloons burst.
	Suggest and explain why this happens.
	[2]
	[Total: 9]

(a)		he box below, sketch a diagram to represent the molecular structure of a liquid. Show the lecules as small circles of equal size.
		[2]
(b)	glas the	eacher in a school laboratory pours liquid ethanol from a bottle into a glass dish. The ss dish rests on an electronic balance. Although the temperature of the laboratory is below boiling point of ethanol, the mass of ethanol in the dish quickly decreases as ethanol porates.
	(i)	State the effect of this evaporation on the temperature of the remaining ethanol.
		[1]
	(ii)	Explain, in terms of the ethanol molecules, why this is happening.
		[1]
	(iii)	The specific latent heat of vaporisation of ethanol is 850 J/g.
		Calculate the thermal energy required to evaporate 3.4 g of ethanol.
		thermal energy =[2]
	(iv)	Suggest two ways in which the rate of evaporation of ethanol from the dish can be reduced.
		1
		2[2]
		[Total: 8]
		[

6

7 (a) Fig. 4.1 shows a syringe containing $100\,\mathrm{cm}^3$ of air at atmospheric pressure. Atmospheric pressure is $1.0\times10^5\,\mathrm{Pa}$.

Fig. 4.1

The open end of the syringe is sealed and the piston is pushed inwards until the air occupies a volume of 40 cm³. The temperature of the air remains constant.

air pressure =[2]

Calculate the new pressure of the air in the syringe.

A syring	ge is used to transfer smokey air from above a flame to a small glass container.
Extreme	ely small solid smoke particles are suspended in the air in the container.
The con	stainer is brightly illuminated from the side and viewed through a microscope.
	e movement of the suspended smoke particles is called Brownian motion. Describe s Brownian motion.
	[2]
(ii) Exp	plain what causes the motion of the smoke particles.
••••	[O

(b)

(c)	In the space below, sketch a diagram to represent the molecular structure of a solid. Show the molecules as small circles of equal sizes.
	[2]
	[Total: 8]